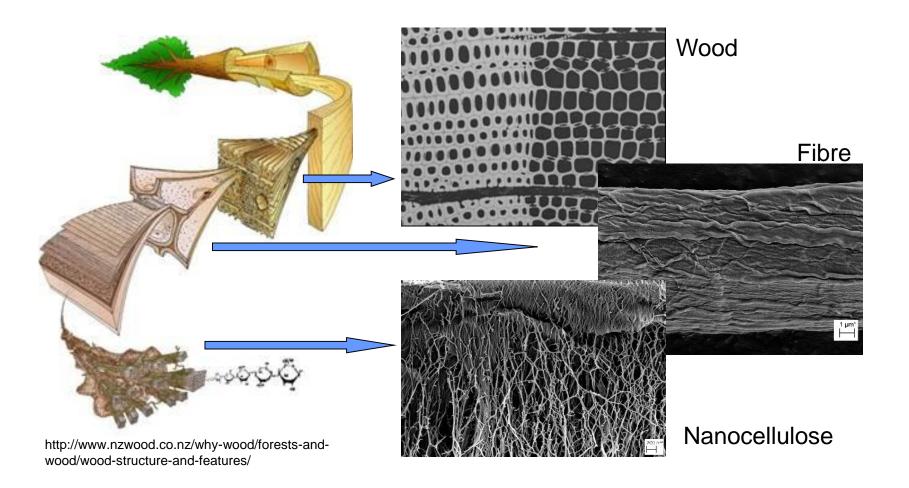
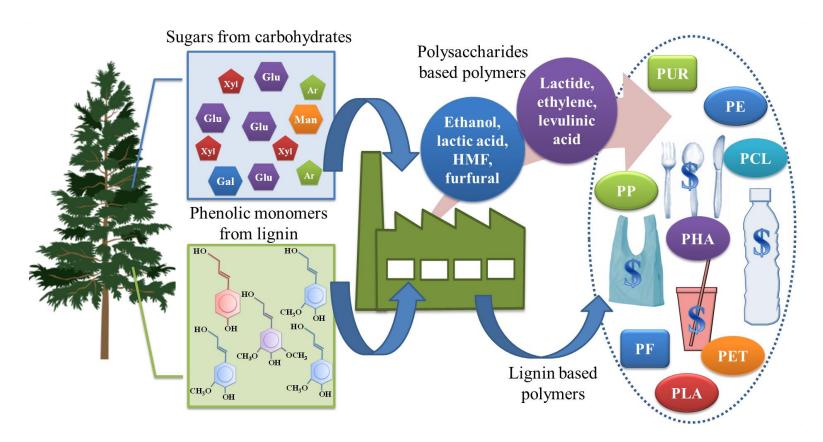

BIOCOMPOSITES

Gary Chinga Carrasco October 25th, 2017

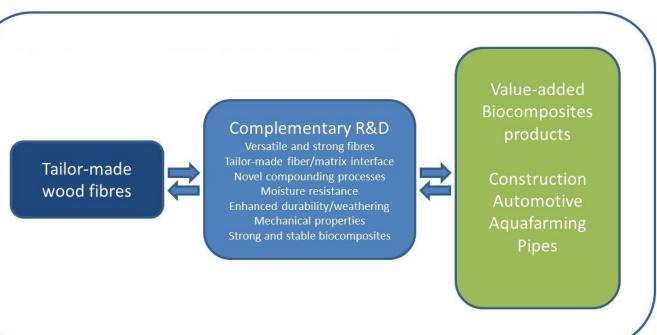
RISE PFI AS


- The market for biocomposites continues to grow, and is expected to have a significant share in various industrial applications, including;
 - Bio-applications
 - Flexible biocomposites
 - Structured biocomposites

There is a need for biobased solutions!

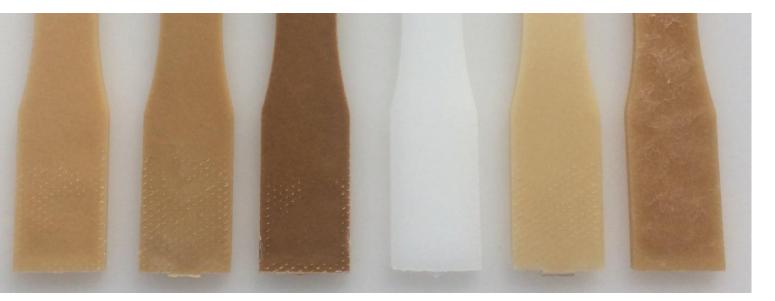


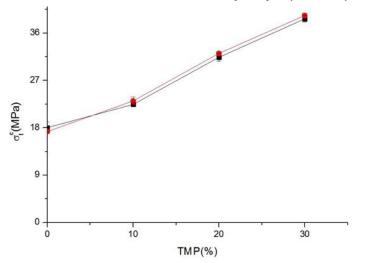
- The Biocomposite group at RISE PFI works with two main routes for biobased solutions:
 - **1**. Fibre and nanocellulose


- The Biocomposite group at RISE PFI works with two main routes for biobased solutions:
 - 1. Fibre and nanocellulose
 - 2. Bioplastics

Structural biocomposites

- **FiberComp** High performance wood fiber composite materials
 - Fibre-reinforced biocomposite products
 - User-driven Research based innovation program (BIA)
 - Close cooperation with Norwegian industry and R&D
 - Project period 2015-2018
- Project owner: Norske Skog Saugbrugs
- Biocomposites for;
 - Automotive
 - Construction
 - Infrastructure




Structural biocomposites

Benefits

- Stronger biocomposites
- Biodegradable or durable, depending on the application
- Competitive price
- Improved environmental performance

Biobased Polyethylene (BioPE) with Thermomechanical pulp (TMP) fibres

BioPE	ТМР		ε _{max}	
BIOPE	(w %)	(GPa)	(%)	
BioPE1	0	1.06 ± 0.03	10.59 ± 0.53	
	10	1.57 ± 0.04	8.09 ± 0.33	
	20	2.44 ± 0.08	5.98 ± 0.24	
	30	3.26 ± 0.06	2.90 ± 0.42	

Tarres et al. Biobased polyethylene reinforced with thermomechanical pulp fibers. To be submitted.

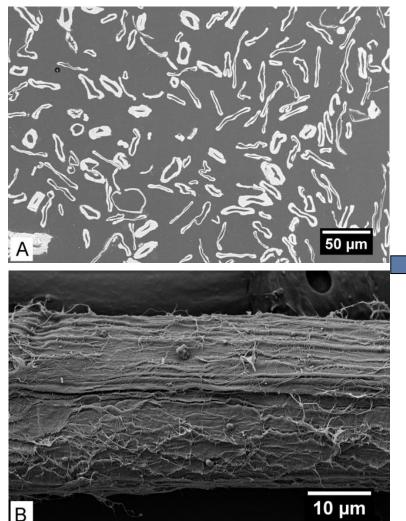
Flooring solutions

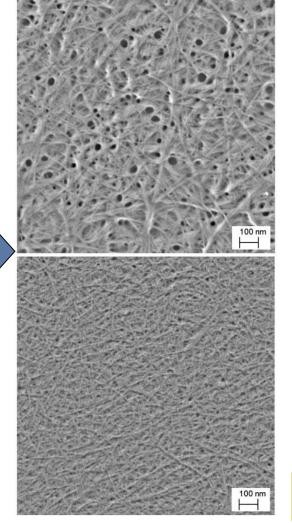
- ElefantGolv New innovative flooring solutions
 - User-driven Research based innovation program (BIA)
 - Close cooperation with Norwegian industry
 - Project period 2013-2017
- **Project owner**: Alloc AS, Lyngdal

• **Biocomposites** for:

- Flooring
- Wall panels

• **Opportunities** for:


- Wood fibres
- Biobased resins
- Recycled paper, side streams


Nanocellulose production from wood fibres

Cellulose fibres

<section-header><section-header><section-header><section-header><section-header><section-header><section-header> Nanocellulose
production •Chemi-mechanical
process

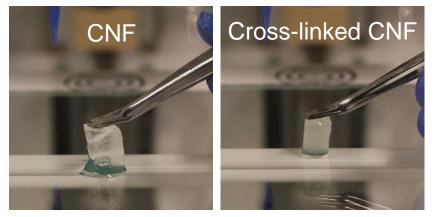
Cellulose nanofibrils (CNF)

PART OF **RI.SE**

Nanocellulose production

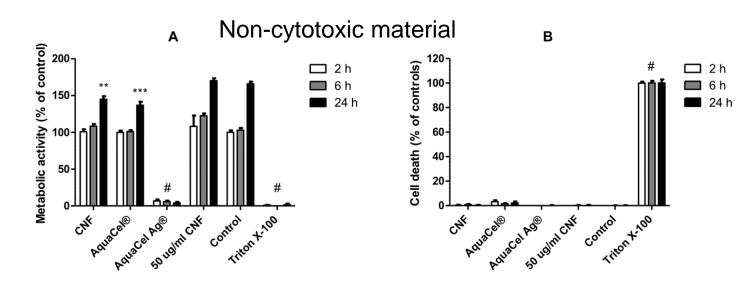
- Several grades of nanocelluloses;
 - Bacterial cellulose
 - Cellulose nanofibrils (CNF)
 - Cellulose nanocrystals (CNC)
- Pre-treatments include;
 - Mechanical
 - Chemical
 - Enzymatic
- Production unit;
 - Grinders
 - Homogenizers
 - Fluidizers
 - Extruders


Nanocellulose	Carboxyl (μmol/g)	Carboxy- methyl (μmol/g)	Aldehyde (μmol/g)	Sulphate half ester (μmol/g)	Intrisic viscosity (ml/g) / DP	Nanofibril diameter (nm)	Nanofibril length (µm)
M-CNF ¹	100				620 / 890	<100	> 1
E-CNF ²	24				408/913	~20	>1
T-CNF	764±60 ³		211±60 ³		450 / 620 ¹	< 20 ¹	> 1 ¹
C-CNF	58±1 ³	346 ± 26^3				< 201	> 1 ¹
C-P-CNF ⁴	39	3	1202		<80	< 20	< 0.2
CNC ¹				300	80 / 90	< 20	< 0.2


1-4: Literature values

Wound dressings

- NanoHeal (2012-2016)
- **Researcher project**: Nano2021
- **Project owner**: RISE PFI
- Close cooperation: NTNU, Institutt for Klinisk og Molekylær Medisin, Hudavdelingen, St.Olavs Hospital
- Development of wound dressing materials;
 - Develop an ultrapure nanocellulose from wood
 - Control the porous structure of wound dressings
 - Clarify the interaction of nanocellulose and wound bacteria
 - Develop wound dressings with adequate mechanical and structural properties
 - Functionalize the wound dressings with printing techniques



Wound dressings

- Cytotoxicity and biocompatibility
 - Screening of various nanocelluloses
 - Mechanical and chemical pre-treated
- The assessment of biocompatibility requires direct contact with living tissue
 - Requires ultrapure nanocellulose materials
 - LPS levels lower than 100 endotoxin units/g

- A protocol was implemented based on TEMPO-mediated oxidation
- Considerable reduction of lipopolysaccharide content (LPS)
 - <50 endotoxin units/gram nanocellulose
- Non-cytotoxic

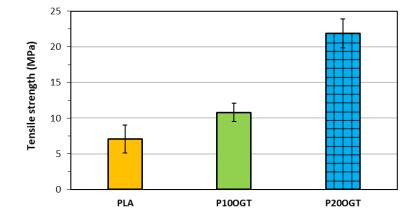
3D Printing

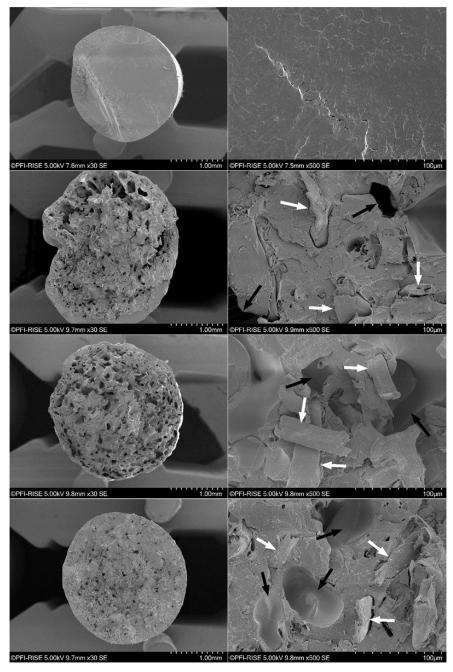
- ValBio-3D: Valorization of residual biomass for advanced 3D materials
- A multi-disciplinary project between European and South American key R&D groups and industry.
- Researcher project: BIONÆR
- **Project period**: 2017-2019
- Project owner in Norway: RISE PFI

Focus on:

- Bioplastic production
- Nanocellulose from agro-industrial waste
- Biocomposites
- 3D (bio)printing

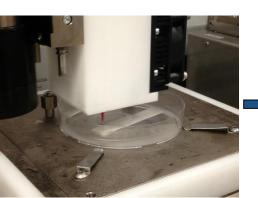
PART OF **RISE**


3D Printing


• Filaments for fused deposition modelling (FDM):

PLA and TMP fibres

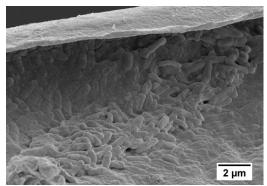
PART OF **RI_SE**


Filgueira et al. Enzymatic-assisted modification of TMP fibres for improving the interfacial adhesion with PLA for 3D printing: ACS Sustainable Chemistry & Engineering, 2017.

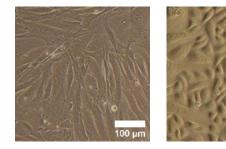
3D Bioprinting

- 3D printing of nanocellulose
 - Customized wound dressings
 - Scaffolds

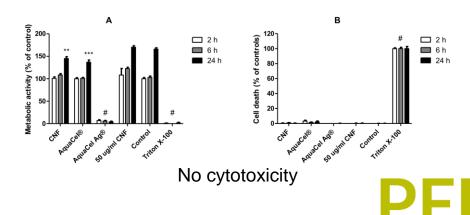
Ultrapure nanocellulose



3D bioprinting



Customized


Wound dressing

Microbiological

Bio-testing

14

- The group offers:
 - New initiatives in the development of biobased materials
 - Application of bioplastics and wood fibres with potential to replace fossil-based plastics
 - Tailoring of biobased material properties biodegradable or durable
 - New additive manufacturing technology
 - Close cooperation with Norwegian and European industry
 - Extensive experience with private and public funded projects

Join us in the development of the next generation biobased materials!

THANK YOU

Gary Chinga Carrasco gary.chinga.carrasco@rise-pfi.no +47 908 36 045

